Regulation of transferrin receptor recycling by protein phosphorylation.

نویسندگان

  • J R Beauchamp
  • P G Woodman
چکیده

The effect of the protein phosphatase inhibitor okadaic acid on transferrin receptor internalization and recycling was examined in HeLa and K562 cells. Okadaic acid inhibited receptor uptake by more than 85% in both cell lines, whereas it affected transferrin recycling to differing degrees: recycling in HeLa cells was inhibited by greater than 90%, compared with only 65% in K562 cells. Okadaic acid also caused a marked redistribution of receptors in each cell line, which was accounted for by the difference in the extent to which transferrin uptake and recycling were inhibited. These effects were most likely mediated by a protein kinase, as they were delayed by 10-15 min and could be suppressed by prior incubation with certain protein kinase inhibitors. In addition, it was found that specific kinase inhibitors affected basal rates of transferrin uptake and recycling, although the extent of these effects differed between cell lines. Together, these results suggest that a complex pattern of protein phosphorylation influences the flux of the endocytic pathway in interphase cells.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Phorbol ester treatment increases the exocytic rate of the transferrin receptor recycling pathway independent of serine-24 phosphorylation

In Chinese hamster ovary (CHO) fibroblast cells the protein kinase C activating phorbol ester, phorbol myristate acetate (PMA), stimulates an increase in cell surface transferrin receptor (TR) expression by increasing the exocytic rate of the recycling pathway. The human TR expressed in CHO cells is similarly affected by PMA treatment. A mutant human TR in which the major protein kinase C phosp...

متن کامل

Modulation of receptor cycling by neuron-enriched endosomal protein of 21 kD

Although correct cycling of neuronal membrane proteins is essential for neurite outgrowth and synaptic plasticity, neuron-specific proteins of the implicated endosomes have not been characterized. Here we show that a previously cloned, developmentally regulated, neuronal protein of unknown function binds to syntaxin 13. We propose to name this protein neuron-enriched endosomal protein of 21 kD ...

متن کامل

A kinase-regulated PDZ-domain interaction controls endocytic sorting of the beta2-adrenergic receptor.

A fundamental question in cell biology is how membrane proteins are sorted in the endocytic pathway. The sorting of internalized beta2-adrenergic receptors between recycling endosomes and lysosomes is responsible for opposite effects on signal transduction and is regulated by physiological stimuli. Here we describe a mechanism that controls this sorting operation, which is mediated by a family ...

متن کامل

TBC1D16 is a Rab4A GTPase activating protein that regulates receptor recycling and EGF receptor signaling.

Rab4A is a master regulator of receptor recycling from endocytic compartments to the plasma membrane. The protein TBC1D16 is up-regulated in melanoma, and TBC1D16-overexpressing melanoma cells are dependent on TBC1D16. We show here that TBC1D16 enhances the intrinsic rate of GTP hydrolysis by Rab4A. TBC1D16 is both cytosolic and membrane associated; the membrane-associated pool colocalizes with...

متن کامل

The Arf GAP AGAP2 interacts with β-arrestin2 and regulates β2-adrenergic receptor recycling and ERK activation.

AGAP2 [Arf (ADP-ribosylation factor) GAP (GTPase-activating protein) with GTP-binding-protein-like, ankyrin repeat and PH (pleckstrin homology) domains] is a multidomain Arf GAP that was shown to promote the fast recycling of transferrin receptors. In the present study we tested the hypothesis that AGAP2 regulates the trafficking of β2-adrenergic receptors. We found that AGAP2 formed a complex ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Biochemical journal

دوره 303 ( Pt 2)  شماره 

صفحات  -

تاریخ انتشار 1994